ESCUELA NACIONAL COLEGIO DE CIENCIAS Y HUMANIDADES | CÁLCULO DIFERENCIAL E INTEGRAL II

Semestre: Sexto

Asignatura: Cálculo Diferencial e Integral II

Unidad 1

Derivada de funciones trascendentes

Propósitos:

Ampliará su conocimiento de la derivada, a las funciones trigonométricas, logarítmicas y exponenciales y reforzará el estudio de la variación al resolver problemas que se modelen con ellas.

Aprendizajes	Se conserva	Se reduce / Se adapta	Se omite	Justificar respuesta
Relaciona en diversos contextos la variación de las funciones seno y coseno a través de procedimientos gráficos, numéricos o algebraicos.		х		Se adapta el aprendizaje a través de procedimientos algebraicos. Es decir, reducir la deducción al registro algebraico.
Reconoce que las derivadas de las funciones trigonométricas involucran variación periódica			х	Puede omitirse la interpretación gráfica y trabajar directamente la algebraica. Y puede ser revisado por el alumno en el contexto del aprendizaje autónomo.
Utiliza las derivadas de las funciones seno y coseno, y reglas de derivación para obtener las		х		Se puede adaptar e integrar al aprendizaje posterior con la ejemplificación de uno o dos casos de derivadas de las funciones seno y coseno para la

derivadas de las funciones: tangente, cotangente, secante y cosecante.		obtención de las otras derivadas de las funciones: tangente, cotangente, secante y cosecante. Con una o dos derivadas se ilustra el punto de cómo a partir del seno o coseno se obtienen las otras.
Utiliza la regla de la cadena para derivar funciones trigonométricas compuestas.	х	Se puede adaptar el aprendizaje para mostrar que en la regla de la cadena, es posible hacerlo reduciendo la cantidad de ejercicios y la complejidad de los mismos.
Aplica las derivadas de funciones trigonométricas a problemas en diversos contextos.	Х	Se puede adaptar en el aprendizaje y omitir el trabajo en la sesión y dejarlo como investigación en la red, ya que existe mucha información al respecto.
Relaciona en diversos contextos la variación de funciones exponenciales a través de procedimientos gráficos, numéricos o algebraicos.	х	Se puede adaptar el aprendizaje reduciendo la deducción al registro algebraico, es decir, la deducción se puede realizar a través de procedimientos algebraicos.
Infiere la derivada de las funciones logarítmicas.	х	Se puede adaptar el aprendizaje para explicar únicamente la derivada de la función logaritmo natural.
Utiliza la regla de la cadena para obtener la derivada de funciones exponenciales y logarítmicas compuestas.	х	Se adapta el aprendizaje reduciendo la cantidad y complejidad de problemas. Es decir, para mostrar la regla de la cadena es posible hacerlo reduciendo la cantidad de ejercicios y la complejidad de los mismos.
Aplica la derivada a funciones exponenciales y logarítmicas a problemas en diversos contextos.	х	Se puede adaptar el aprendizaje, omitiendo el trabajo en la sesión y dejarlo como investigación en la red, pues existe mucha información al respecto. Es decir, puede ser revisado por el alumno en el contexto del aprendizaje autónomo, investigando en la red y reduciendo la cantidad y complejidad de problemas.

Unidad 2

La integral definida

Propósitos:

Interpretará el concepto de integral definida, analizando situaciones dadas en diferentes contextos para construir su significado. Relacionará los conceptos de derivada e integral a través del Teorema Fundamental del Cálculo y lo aplicará.

Aprendizajes	Se conserva	Se reduce / Se adapta	Se omite	Justificar respuesta
Asocia el área bajo una curva con la solución de una situación dada en diversos contextos.	x			Aprendizaje básico, es uno de los ejes, acumulación, del programa que da sustento a la orientación general.
Realiza aproximaciones para el cálculo del área bajo una curva utilizando sumas de áreas a través de rectángulos inscritos y circunscritos y reconoce esta aproximación como un método general.	x			Aprendizaje básico, es uno de los ejes, acumulación, del programa que da sustento a la orientación general.
Relaciona el método de aproximación numérica para calcular el área con un proceso infinito.			х	Este aprendizaje se puede unir e integrar a los dos aprendizajes anteriores.
Calcula el área bajo una curva de la forma		X		Se reduce para n=1 y 2, porque con estos casos se
$f(x) = x^n$			ejemplifica el sentido del aprendizaje.	
como un límite de sumas infinitas para $n=1$, $2 y$ 3 .				
Determina el área bajo la gráfica de una función constante o lineal en intervalos de la forma [0,x] y calcula con ella el área en el intervalo [a,b].		х		Se puede integrar al aprendizaje anterior, por lo que es suficiente para el caso de una función lineal.
Identifica la función área como una antiderivada o primitiva.			х	Se omite porque se puede integrar al aprendizaje anterior.
Infiere a la integral definida como el límite de sumas infinitas.			х	Puede ser revisado por el alumno, a través de vídeos en internet en un contexto de aprendizaje autónomo.

Interpreta la relación que se establece en el teorema fundamental del cálculo.	X			Aprendizaje básico por ser la conexión con e concepto de derivada.	
Utiliza las propiedades de la integral definida.		х		El aprendizaje se adapta y acota con uno o dos ejemplos, porque se integran y/o utilizan las propiedades a lo largo del curso.	
Identifica los elementos que sustentan al teorema fundamental del cálculo.		х		Este aprendizaje se puede adaptar integrándose al aprendizaje: "Interpreta la relación que se establece en el teorema fundamental del cálculo."	
Aplica el teorema fundamental del cálculo.		Х		El aprendizaje se adapta al abordarlo con pocos ejemplos.	
Interpreta la solución de un problema como el cálculo del área bajo una curva.			х	Este aprendizaje se puede omitir incorporándose en el aprendizaje anterior.	

Unidad 3

La integral indefinida

Propósitos:

Establecerá mediante el análisis de situaciones de variación la integral de diversas funciones, utilizará las fórmulas inmediatas y algunos métodos de integración

Aprendizajes	Se conserva	Se reduce / Se adapta	Se omite	Justificar respuesta
Explica el carácter inverso de las operaciones de derivación e integración para obtener las fórmulas inmediatas de integración.	X			Es un aprendizaje básico, que relaciona los dos ejes fundamentales del programa: variación y acumulación.
Reconoce la relación existente entre la antiderivada y la integral indefinida, así como su notación.			х	Se omite porque se puede integrar al aprendizaje anterior.

Utiliza la condición inicial para encontrar el valor de la constante de integración. Reconoce que al modificarse la condición inicial las funciones difieren.			х	Se omite porque se recomienda incorporarlo en el último aprendizaje de esta unidad.
Identifica la fórmula de la integral inmediata que requiere utilizar para resolver una integral dada.	х			Aprendizaje básico para la adquisición de habilidades en el tratamiento de la representación algebraica.
Construye una tabla de integrales inmediatas que incluyan funciones trigonométricas y exponenciales.	х			Es un aprendizaje básico, pero se recomienda seleccionar las que se consideren esenciales.
Realiza las simplificaciones algebraicas pertinentes para convertir una integral a una forma inmediata.		x		Este aprendizaje se puede reducir, pues es posible dar pocos ejemplos que ilustren el procedimiento, sin tanta complejidad algebraica.
Identifica y realiza el cambio de variable apropiado para resolver una integral más sencilla.		x		Este aprendizaje se puede reducir pues es posible dar pocos ejemplos que ilustren el procedimiento, sin tanta complejidad algebraica.
Reconoce que el método de integración por partes amplía las posibilidades para integrar algunos productos de funciones.		х		Este aprendizaje se puede reducir pues es posible dar pocos ejemplos que ilustren el procedimiento, sin tanta complejidad algebraica.
Selecciona el método de integración apropiado para calcular integrales que resultan de modelar problemas en diferentes contextos.			х	Este aprendizaje se puede omitir, pues es posible que el alumno, de forma autónoma, lo revise a través de vídeos en internet.

Unidad 4

Modelos y predicciones.

Propósitos:

Concluirá el estudio de la derivada y la integral, con la construcción de un modelo que las relacione para hacer predicciones sobre el comportamiento de situaciones planteadas.

Aprendizajes	Se conserva	Se reduce / Se adapta	Se omite	Justificar respuesta
Identifica que cuando la rapidez de cambio de una función es proporcional a la misma, se puede modelar a través de la ecuación:	X			Aprendizaje básico que manifiesta la relación operativa entre la derivada e integral de una función.
$\left[\frac{dP(t)}{dt}\right] = kP(t)$				
Emplea el método de separación de variables para resolver la ecuación:				Este aprendizaje se puede adaptar integrándose al aprendizaje anterior.
$\left[\frac{dP(t)}{dt}\right] = kP(t)$		X		
y lo aplica en algunos ejemplos.				
Identifica que la solución general del modelo $P(t) = Cekt$ es una familia de funciones definida por los valores de C .		x		Este aprendizaje se puede reducir dado que es posible ilustrarlo con algunos ejemplos, con poca complejidad algebraica.
Considera las condiciones iniciales para obtener una solución particular que representa a la situación, dada y llega a un modelo del tipo $p(t)=POekt$			х	Este aprendizaje se puede omitir ya que es posible revisarlo, ilustrarlo e integrarlo al aprendizaje anterior.
Utiliza el modelo para hacer predicciones sobre el comportamiento general y puntual de la situación.			х	Este aprendizaje se puede omitir ya que es posible revisarlo incorporándose al último aprendizaje.
Distingue la diferencia en el comportamiento del modelo $p(t)=P0ekt$ dependiendo del signo de k y lo que			х	Este aprendizaje se puede omitir ya que es posible revisarlo incorporándose al último aprendizaje.
esto significa en las situaciones modeladas.				
Reconoce la importancia del modelo p(t)=P0ekt		х		Este aprendizaje se puede reducir e integrar con los dos aprendizajes anteriores abordando pocos ejemplos que incluyan los dos modelos anteriores.

Comentarios finales

Son sugerencias que consideran la ejemplificación de la orientación general de la materia: hacer manifiesta la variación y la acumulación con diferentes aproximaciones y contextos. Los aprendizajes que se reducen o se omiten se pueden superar con la autorregulación que el profesor promueva con sus alumnos.